We are working to support a site-wide PDF but it is not yet available. You can download PDFs for individual lectures through the download badge on each lecture page.

Code should execute sequentially if run in a Jupyter notebook

• See the set up page to install Jupyter, Julia (1.0+) and all necessary libraries
• Please direct feedback to contact@quantecon.org or the discourse forum
• For some notebooks, enable content with "Trust" on the command tab of Jupyter lab
• If using QuantEcon lectures for the first time on a computer, execute ] add InstantiateFromURL inside of a notebook or the REPL

Julia Essentials¶

Contents¶

Having covered a few examples, let’s now turn to a more systematic exposition of the essential features of the language

Overview¶

Topics:

• Common data types
• Iteration
• More on user-defined functions
• Comparisons and logic

Setup¶

In [1]:
using InstantiateFromURL
activate_github("QuantEcon/QuantEconLecturePackages", tag = "v0.9.7");

In [2]:
using LinearAlgebra, Statistics, Compat


Common Data Types¶

Like most languages, Julia language defines and provides functions for operating on standard data types such as

• integers
• floats
• strings
• arrays, etc…

Let’s learn a bit more about them

Primitive Data Types¶

A particularly simple data type is a Boolean value, which can be either true or false

In [3]:
x = true

Out[3]:
true
In [4]:
typeof(x)

Out[4]:
Bool
In [5]:
y = 1 > 2  # now y = false

Out[5]:
false

The two most common data types used to represent numbers are integers and floats

(Computers distinguish between floats and integers because arithmetic is handled in a different way)

In [6]:
typeof(1.0)

Out[6]:
Float64
In [7]:
typeof(1)

Out[7]:
Int64

If you’re running a 32 bit system you’ll still see Float64, but you will see Int32 instead of Int64 (see the section on Integer types from the Julia manual)

Arithmetic operations are fairly standard

In [8]:
x = 2; y = 1.0;


The ; can be used to suppress output from a line of code, or to combine two lines of code together (as above), but is otherwise not necessary

In [9]:
x * y

Out[9]:
2.0
In [10]:
x^2

Out[10]:
4
In [11]:
y / x

Out[11]:
0.5

Although the * can be omitted for multiplication between a numeric literal and a variable

In [12]:
2x - 3y

Out[12]:
1.0

A useful tool for displaying both expressions and code is to use the @show macro, which displays the text and the results

In [13]:
@show 2x - 3y
@show x + y;

2x - 3y = 1.0
x + y = 3.0


Here we have used ; to suppress the output on the last line, which otherwise returns the results of x + y

Complex numbers are another primitive data type, with the imaginary part being specified by im

In [14]:
x = 1 + 2im

Out[14]:
1 + 2im
In [15]:
y = 1 - 2im

Out[15]:
1 - 2im
In [16]:
x * y  # complex multiplication

Out[16]:
5 + 0im

There are several more primitive data types that we’ll introduce as necessary

Strings¶

A string is a data type for storing a sequence of characters

In Julia, strings are created using double quotation marks (single quotations are reserved for the character type)

In [17]:
x = "foobar"

Out[17]:
"foobar"
In [18]:
typeof(x)

Out[18]:
String

You’ve already seen examples of Julia’s simple string formatting operations

In [19]:
x = 10; y = 20

Out[19]:
20

The $ inside of a string is used to interpolate a variable In [20]: "x =$x"

Out[20]:
"x = 10"

With parentheses, you can splice the results of expressions into strings as well

In [21]:
"x + y = $(x + y)"  Out[21]: "x + y = 30" To concatenate strings use * In [22]: "foo" * "bar"  Out[22]: "foobar" Julia provides many functions for working with strings In [23]: s = "Charlie don't surf"  Out[23]: "Charlie don't surf" In [24]: split(s)  Out[24]: 3-element Array{SubString{String},1}: "Charlie" "don't" "surf"  In [25]: replace(s, "surf" => "ski")  Out[25]: "Charlie don't ski" In [26]: split("fee,fi,fo", ",")  Out[26]: 3-element Array{SubString{String},1}: "fee" "fi" "fo"  In [27]: strip(" foobar ") # remove whitespace  Out[27]: "foobar" Julia can also find and replace using regular expressions (see regular expressions documentation for more info) In [28]: match(r"(\d+)", "Top 10") # find digits in string  Out[28]: RegexMatch("10", 1="10") Containers¶ Julia has several basic types for storing collections of data We have already discussed arrays A related data type is a tuple, which is immutable and can contain different types In [29]: x = ("foo", "bar") y = ("foo", 2)  Out[29]: ("foo", 2) In [30]: typeof(x), typeof(y)  Out[30]: (Tuple{String,String}, Tuple{String,Int64}) An immutable value is one that cannot be altered once it resides in memory In particular, tuples do not support item assignment (i.e. x[1] = "test" would fail) Tuples can be constructed with or without parentheses In [31]: x = "foo", 1  Out[31]: ("foo", 1) In [32]: function f() return "foo", 1 end f()  Out[32]: ("foo", 1) Tuples can also be unpacked directly into variables In [33]: x = ("foo", 1)  Out[33]: ("foo", 1) In [34]: word, val = x println("word =$word, val = $val")  word = foo, val = 1  Tuples can be created with a hanging , – this is useful to create a tuple with one element In [35]: x = ("foo", 1,) y = ("foo",) typeof(x), typeof(y)  Out[35]: (Tuple{String,Int64}, Tuple{String}) Referencing Items¶ The last element of a sequence type can be accessed with the keyword end In [36]: x = [10, 20, 30, 40]  Out[36]: 4-element Array{Int64,1}: 10 20 30 40 In [37]: x[end]  Out[37]: 40 In [38]: x[end-1]  Out[38]: 30 To access multiple elements of an array or tuple, you can use slice notation In [39]: x[1:3]  Out[39]: 3-element Array{Int64,1}: 10 20 30 In [40]: x[2:end]  Out[40]: 3-element Array{Int64,1}: 20 30 40 The same slice notation works on strings In [41]: "foobar"[3:end]  Out[41]: "obar" Dictionaries¶ Another container type worth mentioning is dictionaries Dictionaries are like arrays except that the items are named instead of numbered In [42]: d = Dict("name" => "Frodo", "age" => 33)  Out[42]: Dict{String,Any} with 2 entries: "name" => "Frodo" "age" => 33 In [43]: d["age"]  Out[43]: 33 The strings name and age are called the keys The keys are mapped to values (in this case "Frodo" and 33) They can be accessed via keys(d) and values(d) respectively There’s a neat interface to this in Julia, which takes us to our next topic Iterating¶ One of the most important tasks in computing is stepping through a sequence of data and performing a given action Julia provides neat and flexible tools for iteration as we now discuss Iterables¶ An iterable is something you can put on the right hand side of for and loop over These include sequence data types like arrays In [44]: actions = ["surf", "ski"] for action in actions println("Charlie doesn't$action")
end

Charlie doesn't surf
Charlie doesn't ski


They also include so-called iterators

You’ve already come across these types of values

In [45]:
for i in 1:3
print(i)
end

123

If you ask for the keys of dictionary you get an iterator

In [46]:
d = Dict("name" => "Frodo", "age" => 33)

Out[46]:
Dict{String,Any} with 2 entries:
"name" => "Frodo"
"age"  => 33
In [47]:
keys(d)

Out[47]:
Base.KeySet for a Dict{String,Any} with 2 entries. Keys:
"name"
"age"

This makes sense, since the most common thing you want to do with keys is loop over them

The benefit of providing an iterator rather than an array, say, is that the former is more memory efficient

Should you need to transform an iterator into an array you can always use collect()

In [48]:
collect(keys(d))

Out[48]:
2-element Array{String,1}:
"name"
"age" 

Looping without Indices¶

You can loop over sequences without explicit indexing, which often leads to neater code

For example compare

In [49]:
x_values = 1:5

Out[49]:
1:5
In [50]:
for x in x_values
println(x * x)
end

1
4
9
16
25

In [51]:
for i in eachindex(x_values)
println(x_values[i] * x_values[i])
end

1
4
9
16
25


Julia provides some functional-style helper functions (similar to Python and R) to facilitate looping without indices

One is zip(), which is used for stepping through pairs from two sequences

For example, try running the following code

In [52]:
countries = ("Japan", "Korea", "China")
cities = ("Tokyo", "Seoul", "Beijing")
for (country, city) in zip(countries, cities)
println("The capital of $country is$city")
end

The capital of Japan is Tokyo
The capital of Korea is Seoul
The capital of China is Beijing


If we happen to need the index as well as the value, one option is to use enumerate()

The following snippet will give you the idea

In [53]:
countries = ("Japan", "Korea", "China")
cities = ("Tokyo", "Seoul", "Beijing")
for (i, country) in enumerate(countries)
city = cities[i]
println("The capital of $country is$city")
end

The capital of Japan is Tokyo
The capital of Korea is Seoul
The capital of China is Beijing


Comprehensions¶

Comprehensions are an elegant tool for creating new arrays or dictionaries from iterables

Here are some examples

In [54]:
doubles = [ 2i for i in 1:4 ]

Out[54]:
4-element Array{Int64,1}:
2
4
6
8
In [55]:
animals = ["dog", "cat", "bird"];   # Semicolon suppresses output

In [56]:
plurals = [ animal * "s" for animal in animals ]

Out[56]:
3-element Array{String,1}:
"dogs"
"cats"
"birds"
In [57]:
[ i + j for i in 1:3, j in 4:6 ]

Out[57]:
3×3 Array{Int64,2}:
5  6  7
6  7  8
7  8  9
In [58]:
[ i + j + k for i in 1:3, j in 4:6, k in 7:9 ]

Out[58]:
3×3×3 Array{Int64,3}:
[:, :, 1] =
12  13  14
13  14  15
14  15  16

[:, :, 2] =
13  14  15
14  15  16
15  16  17

[:, :, 3] =
14  15  16
15  16  17
16  17  18

The same kind of expression works for dictionaries

In [59]:
Dict(string(i) => i for i in 1:3)

Out[59]:
Dict{String,Int64} with 3 entries:
"1" => 1
"2" => 2
"3" => 3

Comparisons and Logical Operators¶

Comparisons¶

As we saw earlier, when testing for equality we use ==

In [60]:
x = 1

Out[60]:
1
In [61]:
x == 2

Out[61]:
false

For “not equal” use != or ≠ (\ne<TAB>)

In [62]:
x != 3

Out[62]:
true

Julia can also test approximate equality with ≈ (\approx<TAB>)

In [63]:
1 + 1E-8 ≈ 1

Out[63]:
true

Be careful when using this, however, as there are subtleties involving the scales of the quantities compared

Combining Expressions¶

Here are the standard logical connectives (conjunction, disjunction)

In [64]:
true && false

Out[64]:
false
In [65]:
true || false

Out[65]:
true

Remember

• P && Q is true if both are true, otherwise it’s false
• P || Q is false if both are false, otherwise it’s true

User-Defined Functions¶

Let’s talk a little more about user-defined functions

User-defined functions are important for improving the clarity of your code by

• separating different strands of logic
• facilitating code reuse (writing the same thing twice is always a bad idea)

Julia functions are convenient:

• Any number of functions can be defined in a given file
• Any “value” can be passed to a function as an argument, including other functions
• Functions can be (and often are) defined inside other functions
• A function can return any kind of value, including functions

We’ll see many examples of these structures in the following lectures

For now let’s just cover some of the different ways of defining functions

Return Statement¶

In Julia, the return statement is optional, so that the following functions have identical behavior

In [66]:
function f1(a, b)
return a * b
end

function f2(a, b)
a * b
end

Out[66]:
f2 (generic function with 1 method)

When no return statement is present, the last value obtained when executing the code block is returned

Although some prefer the second option, we often favor the former on the basis that explicit is better than implicit

A function can have arbitrarily many return statements, with execution terminating when the first return is hit

You can see this in action when experimenting with the following function

In [67]:
function foo(x)
if x > 0
return "positive"
end
return "nonpositive"
end

Out[67]:
foo (generic function with 1 method)

Other Syntax for Defining Functions¶

For short function definitions Julia offers some attractive simplified syntax

First, when the function body is a simple expression, it can be defined without the function keyword or end

In [68]:
f(x) = sin(1 / x)

Out[68]:
f (generic function with 2 methods)

Let’s check that it works

In [69]:
f(1 / pi)

Out[69]:
1.2246467991473532e-16

Julia also allows you to define anonymous functions

For example, to define f(x) = sin(1 / x) you can use x -> sin(1 / x)

The difference is that the second function has no name bound to it

How can you use a function with no name?

Typically it’s as an argument to another function

In [70]:
map(x -> sin(1 / x), randn(3))  # apply function to each element

Out[70]:
3-element Array{Float64,1}:
0.8534366764315459
-0.9173977114653116
-0.3929971855710332

Optional and Keyword Arguments¶

Function arguments can be given default values

In [71]:
f(x, a = 1) = exp(cos(a * x))

Out[71]:
f (generic function with 3 methods)

If the argument is not supplied, the default value is substituted

In [72]:
f(pi)

Out[72]:
0.36787944117144233
In [73]:
f(pi, 2)

Out[73]:
2.718281828459045

Another option is to use keyword arguments

The difference between keyword and standard (positional) arguments is that they are parsed and bounded by name rather than the order in the function call

For example, in the call

In [74]:
f(x; a = 1) = exp(cos(a * x))  # note the ; in the definition

f(pi, a = 2) # calling with ; is usually optional and generally discouraged

Out[74]:
2.718281828459045

A common scenario in computing is that

• we have a function f such that f(x) returns a number for any number x
• we wish to apply f to every element of an iterable x_vec to produce a new result y_vec

In Julia loops are fast and we can do this easily enough with a loop

For example, suppose that we want to apply sin to x_vec = [2.0, 4.0, 6.0, 8.0]

The following code will do the job

In [75]:
x_vec = [2.0, 4.0, 6.0, 8.0]
y_vec = similar(x_vec)
for (i, x) in enumerate(x_vec)
y_vec[i] = sin(x)
end


But this is a bit unwieldy so Julia offers the alternative syntax

In [76]:
y_vec = sin.(x_vec)

Out[76]:
4-element Array{Float64,1}:
0.9092974268256817
-0.7568024953079282
-0.27941549819892586
0.9893582466233818 

More generally, if f is any Julia function, then f. references the broadcasted version

Conveniently, this applies to user-defined functions as well

To illustrate, let’s write a function chisq such that chisq(k) returns a chi-squared random variable with k degrees of freedom when k is an integer

In doing this we’ll exploit the fact that, if we take k independent standard normals, square them all and sum, we get a chi-squared with k degrees of freedom

In [77]:
function chisq(k)
@assert k > 0
z = randn(k)
return sum(z -> z^2, z)  # same as sum(x^2 for x in z)
end

Out[77]:
chisq (generic function with 1 method)

The macro @assert will check that the next expression evaluates to true, and will stop and display an error otherwise

In [78]:
chisq(3)

Out[78]:
1.667414527293902

Note that calls with integers less than 1 will trigger an assertion failure inside the function body

In [79]:
chisq(-2)

AssertionError: k > 0

Stacktrace:
[1] chisq(::Int64) at ./In[77]:2
[2] top-level scope at In[79]:1

Let’s try this out on an array of integers, adding the broadcast

In [80]:
chisq.([2, 4, 6])

Out[80]:
3-element Array{Float64,1}:
1.6568486885575584
3.0396336623492743
3.6557358836932665

The broadcasting notation is not simply vectorization, as it is able to “fuse” multiple broadcasts together to generate efficient code

In [81]:
x = 1.0:1.0:5.0
y = [2.0, 4.0, 5.0, 6.0, 8.0]
z = similar(y)
z .= x .+ y .- sin.(x) # generates efficient code instead of many temporaries

Out[81]:
5-element Array{Float64,1}:
2.1585290151921033
5.090702573174318
7.858879991940133
10.756802495307928
13.958924274663138 

A convenience macro for adding broadcasting on every function call is @.

In [82]:
@. z = x + y - sin(x)

Out[82]:
5-element Array{Float64,1}:
2.1585290151921033
5.090702573174318
7.858879991940133
10.756802495307928
13.958924274663138 

Since the +, -, = operators are functions, behind the scenes this is broadcasting against both the x and y vectors

The compiler will fix anything which is a scalar, and otherwise iterate across every vector

In [83]:
f(a, b) = a + b # bivariate function
a = [1 2 3]
b = [4 5 6]
@show f.(a, b) # across both
@show f.(a, 2); # fix scalar for second

f.(a, b) = [5 7 9]
f.(a, 2) = [3 4 5]


The compiler is only able to detect “scalar” values in this way for a limited number of types (e.g. integers, floating points, etc) and some packages (e.g. Distributions)

For other types, you will need to wrap any scalars in Ref to fix them, or else it will try to broadcast the value

Another place that you may use a Ref is to fix a function parameter you do not want to broadcast over

In [84]:
f(x, y) = [1, 2, 3] ⋅ x + y   # "⋅" can be typed by \cdot<tab>
f([3, 4, 5], 2)   # uses vector as first parameter
f.(Ref([3, 4, 5]), [2, 3])   # broadcasting over 2nd parameter, fixing first

Out[84]:
2-element Array{Int64,1}:
28
29

Scoping and Closures¶

Since global variables are usually a bad idea, we will concentrate on understanding the role of good local scoping practice

That said, while many of the variables in these Jupyter notebook are global, we have been careful to write the code so that the entire code could be copied inside of a function

When copied inside a function, variables become local and functions become closures

Warning

For/while loops and global variables in Jupyter vs. the REPL:

• In the current version of Julia, there is a distinction between the use of scope in an interactive Jupyter environment
• The description here of globals applies to Jupyter notebooks, and may also apply to the REPL and top-level scripts
• In general, you should be creating functions when working with .jl files, and the distinction generally won’t apply

For more information on using globals outside of Jupyter, (see variable scoping documentation), though these rules are likely to change in interactive modes in Julia 1.1

Functions¶

The scope of a variable name determines where it is valid to refer to it, and how clashes between names can occur

Think of the scope as a list of all of the name bindings of relevant variables

Different scopes could contain the same name but be assigned to different things

An obvious place to start is to notice that functions introduce their own local names

In [85]:
f(x) = x^2  # local x in scope

# x is not bound to anything in this outer scope
y = 5
f(y)

Out[85]:
25

This would be roughly equivalent to

In [86]:
function g() # scope within the g function

f(x) = x^2 # local x in scope

# x is not bound to anything in this outer scope
y = 5
f(y)
end
g() # run the function

Out[86]:
25

This is also equivalent if the y was changed to x, since it is a different scope

In [87]:
f(x) = x^2  # local x in scope

# x is not bound to anything in this outer scope
x = 5   # a different x than the local variable name
f(x)    # calling f with x

Out[87]:
25

The scoping also applies to named arguments in functions

In [88]:
f(x; y = 1) = x + y  # x and y are names local to the f function
xval = 0.1
yval = 2
f(xval; y = yval)

Out[88]:
2.1

Due to scoping, you could write this as

In [89]:
f(x; y = 1) = x + y  # x and y are names local to the f function
x = 0.1
y = 2
f(x; y = y) # left hand y is the local name of the argument in the function

Out[89]:
2.1

Similarly to named arguments, the local scope also works with named tuples

In [90]:
xval = 0.1
yval = 2
@show (x = xval, y = yval)  # named tuple with names x and y

x = 0.1
y = 2

# create a named tuple with names x and y local to the tuple, bound to the RHS x and y
(x = x, y = y)

(x = xval, y = yval) = (x = 0.1, y = 2)

Out[90]:
(x = 0.1, y = 2)

As you use Julia, you will find that scoping is very natural and that there is no reason to avoid using x and y in both places

In fact, it frequently leads to clear code closer to the math when you don’t need to specify intermediaries.

In [91]:
f(x) = x^2  # local x in scope

x = 1:5     # not an integer

f.(x)       # broadcasts the x^2 function over the vector

Out[91]:
5-element Array{Int64,1}:
1
4
9
16
25

Closures¶

Frequently, you will want to have a function that calculates a value given some fixed parameters

In [92]:
f(x, a) = a * x^2

f(1, 0.2)

Out[92]:
0.2

While the above was convenient, there are other times when you want to simply fix a variable or refer to something already calculated

In [93]:
a = 0.2
f(x) = a * x^2     # refers to the a in the outer scope
f(1)               # univariate function

Out[93]:
0.2

When the function f is parsed in Julia, it will look to see if any of the variables are already defined in the current scope

In this case, it finds the a since it was defined previously, whereas if the code defines a = 0.2 after the f(x) definition, it would fail

This also works when embedded in other functions

In [94]:
function g(a)
f(x) = a * x^2  # refers to the a passed in the function
f(1)            # univariate function
end
g(0.2)

Out[94]:
0.2

Comparing the two: the key here is not that a is a global variable, but rather that the f function is defined to capture a variable from an outer scope

This is called a closure, and are used throughout the lectures

It is generally bad practice to modify the captured variable in the function, but otherwise the code becomes very clear

One place where this can be helpful is in a string of dependent calculations

For example, if you wanted to calculate a (a, b, c) from $a = f(x), b = g(a), c = h(a, b)$ where $f(x) = x^2, g(a) = 2 a, h(a, b) = a + b$

In [95]:
function solvemodel(x)
a = x^2
b = 2 * a
c = a + b
return (a = a, b = b, c = c)  # note local scope of tuples!
end

solvemodel(0.1)

Out[95]:
(a = 0.010000000000000002, b = 0.020000000000000004, c = 0.030000000000000006)

Higher-Order Functions¶

One of the benefits of working with closures and functions is that you can return them from other functions

This leads to some natural programming patterns we have already been using, where we can use functions of functions and functions returning functions (or closures)

To see a simple example, consider functions that accept other functions (including closures)

In [96]:
twice(f, x) = f(f(x))  # applies f to itself twice
f(x) = x^2
@show twice(f, 2.0)

twice(x -> x^2, 2.0)
a = 5
g(x) = a * x
@show twice(g, 2.0);   # using a closure

twice(f, 2.0) = 16.0
twice(g, 2.0) = 50.0


This pattern has already been used extensively in our code and is key to keeping things like interpolation, numerical integration, and plotting generic

One example of using this in a library is Expectations.jl, where we can pass a function to the expectation function

In [97]:
using Expectations, Distributions

@show d = Exponential(2.0)

f(x) = x^2
@show expectation(f, d);  # E(f(x))

d = Exponential(2.0) = Exponential{Float64}(θ=2.0)
expectation(f, d) = 8.0


Another example is for a function that returns a closure itself

In [98]:
function multiplyit(a, g)
return x -> a * g(x)  # function with g used in the closure
end

f(x) = x^2
h = multiplyit(2.0, f)    # use our quadratic, returns a new function which doubles the result
h(2)     # returned function is like any other function

Out[98]:
8.0

You can create and define using function as well

In [99]:
function snapabove(g, a)
function f(x)
if x > a         # "a" is captured in the closure f
return g(x)
else
return g(a)
end
end
return f    # closure with the embedded a
end

f(x) = x^2
h = snapabove(f, 2.0)

using Plots

gr(fmt=:png);
plot(h, 0.0:0.1:3.0)

Out[99]:

Loops¶

The for and while loops also introduce a local scope, and you can roughly reason about them the same way you would a function/closure

In particular

In [100]:
for i in 1:2  # introduces local i
dval1 = i
println(i)
end

# @show (i, dval1)  # would fail as neither exists in this scope

for i in 1:2  # introduces a different local i
println(i)
end

1
2
1
2


On the other hand just as with closures, if a variable is already defined it will be available in the inner scope

In [101]:
dval2 = 0  # introduces variables
for i in 1:2   # introduces local i
dval2 = i  # refers to outer variable
end

dval2 # still can't refer to i

Out[101]:
2

Similarly, for while loops

In [102]:
val = 1.0
tol = 0.002
while val > tol
old = val
val = val / 2
difference = val - old
end

@show val;
# @show difference fails, not in scope

val = 0.001953125


A Quick Check for Scoping Design¶

While we have argued against global variables as poor practice, you may have noticed that in Jupyter notebooks we have been using them throughout

Here, global variables are used in an interactive editor because they are convenient, and not because they are essential to the design of functions

A simple test of the difference is to take a segment of code and wrap it in a function, for example

In [103]:
x = 2.0
f(y) = x + y
z = f(4.0)

for i in 1:3
z += i
end

println("z = $z")  z = 12.0  Here, the x and z are global variables, the function f refers to the global variable x, and the global variable z is modified in the for loop However, you can simply wrap the entire code in a function In [104]: function wrapped() x = 2.0 f(y) = x + y z = f(4.0) for i in 1:3 z += i end println("z =$z")
end

wrapped()

z = 12.0


Now, there are no global variables

While it is convenient to skip wrapping our code throughout, in general you will want to wrap any performance sensitive code in this way

Exercises¶

Exercise 1¶

Part 1: Given two numeric arrays or tuples x_vals and y_vals of equal length, compute their inner product using zip()

Part 2: Using a comprehension, count the number of even numbers between 0 and 99

• Hint: iseven returns true for even numbers and false for odds.

Part 3: Using a comprehension, take pairs = ((2, 5), (4, 2), (9, 8), (12, 10)) and count the number of pairs (a, b) such that both a and b are even

Exercise 2¶

Consider the polynomial

$$p(x) = a_0 + a_1 x + a_2 x^2 + \cdots a_n x^n = \sum_{i=0}^n a_i x^i \tag{1}$$

Using enumerate() in your loop, write a function p such that p(x, coeff) computes the value in (1) given a point x and an array of coefficients coeff

Exercise 3¶

Write a function that takes a string as an argument and returns the number of capital letters in the string

Hint: uppercase("foo") returns "FOO"

Exercise 4¶

Write a function that takes two sequences seq_a and seq_b as arguments and returns true if every element in seq_a is also an element of seq_b, else false

• By “sequence” we mean an array, tuple or string

Exercise 5¶

The Julia libraries include functions for interpolation and approximation

Nevertheless, let’s write our own function approximation routine as an exercise

In particular, write a function linapprox that takes as arguments

• A function f mapping some interval $[a, b]$ into $\mathbb R$
• two scalars a and b providing the limits of this interval
• An integer n determining the number of grid points
• A number x satisfying a ≤ x ≤ b

and returns the piecewise linear interpolation of f at x, based on n evenly spaced grid points a = point[1] < point[2] < ... < point[n] = b

Aim for clarity, not efficiency

Hint: use the function range to linearly space numbers

Exercise 6¶

The following data lists US cities and their populations

Copy this text into a text file called us_cities.txt and save it in your present working directory

• That is, save it in the location Julia returns when you call pwd()

This can also be achieved by running the following Julia code:

In [105]:
open("us_cities.txt", "w") do f
write(f,
"new york: 8244910
los angeles: 3819702
chicago: 2707120
houston: 2145146
phoenix: 1469471
san antonio: 1359758
san diego: 1326179
dallas: 1223229")
end

Out[105]:
167

Write a program to calculate total population across these cities

Hints:

• If f is a file type then eachline(f) provides an iterable that steps you through the lines in the file
• parse(Int, "100") converts the string "100" into an integer

Solutions¶

Exercise 1¶

Part 1 solution:

Here’s one possible solution

In [106]:
x_vals = [1, 2, 3]
y_vals = [1, 1, 1]
sum(x * y for (x, y) in zip(x_vals, y_vals))

Out[106]:
6

Part 2 solution:

One solution is

In [107]:
sum(iseven, 0:99)

Out[107]:
50

Part 3 solution:

Here’s one possibility

In [108]:
pairs = ((2, 5), (4, 2), (9, 8), (12, 10))
sum(xy -> all(iseven, xy), pairs)

Out[108]:
2

Exercise 2¶

In [109]:
p(x, coeff) = sum(a * x^(i-1) for (i, a) in enumerate(coeff))

Out[109]:
p (generic function with 1 method)
In [110]:
p(1, (2, 4))

Out[110]:
6

Exercise 3¶

Here’s one solutions:

In [111]:
function f_ex3(string)
count = 0
for letter in string
if (letter == uppercase(letter)) && isletter(letter)
count += 1
end
end
return count
end

f_ex3("The Rain in Spain")

Out[111]:
3

Exercise 4¶

Here’s one solutions:

In [112]:
function f_ex4(seq_a, seq_b)
is_subset = true
for a in seq_a
if a ∉ seq_b
is_subset = false
end
end
return is_subset
end

# test
println(f_ex4([1, 2], [1, 2, 3]))
println(f_ex4([1, 2, 3], [1, 2]))

true
false


if we use the Set data type then the solution is easier

In [113]:
f_ex4_2(seq_a, seq_b) = Set(seq_a) ⊆ Set(seq_b) # \subseteq (⊆) is unicode for issubset

println(f_ex4_2([1, 2], [1, 2, 3]))
println(f_ex4_2([1, 2, 3], [1, 2]))

true
false


Exercise 5¶

In [114]:
function linapprox(f, a, b, n, x)
# evaluates the piecewise linear interpolant of f at x,
# on the interval [a, b], with n evenly spaced grid points.

length_of_interval = b - a
num_subintervals = n - 1
step = length_of_interval / num_subintervals

# find first grid point larger than x
point = a
while point ≤ x
point += step
end

# x must lie between the gridpoints (point - step) and point
u, v = point - step, point

return f(u) + (x - u) * (f(v) - f(u)) / (v - u)
end

Out[114]:
linapprox (generic function with 1 method)

Let’s test it

In [115]:
f_ex5(x) = x^2
g_ex5(x) = linapprox(f_ex5, -1, 1, 3, x)

Out[115]:
g_ex5 (generic function with 1 method)
In [116]:
x_grid = range(-1.0, 1.0, length = 100)
y_vals = f_ex5.(x_grid)
y = g_ex5.(x_grid)
plot(x_grid, y_vals, label = "true")
plot!(x_grid, y, label = "approximation")

Out[116]:

Exercise 6¶

In [117]:
f_ex6 = open("us_cities.txt", "r")
total_pop = 0
for line in eachline(f_ex6)
city, population = split(line, ':')  # tuple unpacking
total_pop += parse(Int, population)
end
close(f_ex6)
println("Total population = \$total_pop")

Total population = 23831986

• Share page