How to read this lecture...

Code should execute sequentially if run in a Jupyter notebook

  • See the set up page to install Jupyter, Julia (1.0+) and all necessary libraries
  • Please direct feedback to or the discourse forum
  • For some notebooks, enable content with "Trust" on the command tab of Jupyter lab
  • If using QuantEcon lectures for the first time on a computer, execute ] add InstantiateFromURL inside of a notebook or the REPL

Interacting with Julia


In this lecture we’ll start examining different features of the Julia and Jupyter environments

Using Jupyter

Getting Started

Recall that the easiest way to get started with these notebooks is to follow the cloning instructions earlier

To summarize, if on a desktop you should clone the notebooks repository, then in a Julia REPL type

using IJulia; jupyterlab()

Hint: Julia will remember the last commands in the REPL, so you can use up-arrow to restart JupyterLab

Alternatively, if you are using an online Jupyter, then you can directly open a new notebook

Finally, if you installed Jupyter separately or have added added Jupyter to the Path then cd to the folder location in a terminal, and run

jupyter lab

Regardless, your web browser should open to a page that looks something like this

The page you are looking at is called the “dashboard”

If you click on “Julia 1.x.x” you should have the option to start a Julia notebook

Here’s what your Julia notebook should look like

The notebook displays an active cell, into which you can type Julia commands

Notebook Basics

Notice that in the previous figure the cell is surrounded by a blue border

This means that the cell is selected, and double-clicking will place it in edit mode

As a result, you can type in Julia code and it will appear in the cell

When you’re ready to execute these commands, hit Shift-Enter

The next thing to understand about the Jupyter notebook is that it uses a modal editing system

This means that the effect of typing at the keyboard depends on which mode you are in

The two modes are

  1. Edit mode

    • Indicated by a green border around one cell, as in the pictures above
    • Whatever you type appears as is in that cell
  2. Command mode

    • The green border is replaced by a blue border
    • Key strokes are interpreted as commands — for example, typing b adds a new cell below the current one

(To learn about other commands available in command mode, go to “Keyboard Shortcuts” in the “Help” menu)

Switching modes

  • To switch to command mode from edit mode, hit the Esc key
  • To switch to edit mode from command mode, hit Enter or click in a cell

The modal behavior of the Jupyter notebook is a little tricky at first but very efficient when you get used to it

Working with Files

To run an existing Julia file using the notebook you can copy and paste the contents into a cell in the notebook

If it’s a long file, however, you have the alternative of

  1. Saving the file in your present working directory
  2. Executing include("filename") in a cell

The present working directory can be found by executing the command pwd()


Note that if you’re using a JupyterHub setup, you will need to first run

In [1]:
using InstantiateFromURL
github_project("QuantEcon/quantecon-notebooks-julia", version = "0.3.0")

in a new cell (i.e., Shift + Enter)

This might take 15-20 minutes depending on your setup, as it installs a large set of packages for our use

Run the following cell

In [2]:
using Plots
plot(sin, -2π, 2π, label="sin(x)")

You’ll see something like this (although the style of plot depends on your installation)

Note: The “time-to-first-plot” in Julia takes a while, since it needs to compile many functions - but is almost instantaneous the second time you run the cell

Working with the Notebook

Let’s go over some more Jupyter notebook features — enough so that we can press ahead with programming

Tab Completion

Tab completion in Jupyter makes it easy to find Julia commands and functions available

For example if you type rep and hit the tab key you’ll get a list of all commands that start with rep

Getting Help

To get help on the Julia function such as repeat, enter ? repeat

Documentation should now appear in the browser

Other Content

In addition to executing code, the Jupyter notebook allows you to embed text, equations, figures and even videos in the page

For example, here we enter a mixture of plain text and LaTeX instead of code

Next we Esc to enter command mode and then type m to indicate that we are writing Markdown, a mark-up language similar to (but simpler than) LaTeX

(You can also use your mouse to select Markdown from the Code drop-down box just below the list of menu items)

Now we Shift + Enter to produce this

Inserting unicode (e.g. Greek letters)

Julia supports the use of unicode characters such as α and β in your code

Unicode characters can be typed quickly in Jupyter using the tab key

Try creating a new code cell and typing \alpha, then hitting the tab key on your keyboard

Shell Commands

You can execute shell commands (system commands) in Jupyter by prepending a semicolon

For example, ; ls will execute the UNIX style shell command ls, which — at least for UNIX style operating systems — lists the contents of the current working directory

These shell commands are handled by your default system shell and hence are platform specific

Package Operations

You can execute package operations in the notebook by prepending a ]

For example, ] st will give the status of installed packages in the current environment

Note: Cells where you use ; and ] must not have any other instructions in them (i.e., they should be one-liners)

Sharing Notebooks

Notebook files are just text files structured in JSON and typically end with .ipynb

A notebook can easily be saved and shared between users — you just need to pass around the ipynb file

To open an existing ipynb file, import it from the dashboard (the first browser page that opens when you start Jupyter notebook) and run the cells or edit as discussed above

The Jupyter organization has a site for sharing notebooks called nbviewer which provides a static HTML representations of notebooks

QuantEcon also hosts the QuantEcon Notes website, where you can upload and share your notebooks with other economists and the QuantEcon community

Using the REPL

As we saw in the desktop installation, the REPL is a Julia specific terminal

It becomes increasingly important as you learn Julia, and you will find it to be a useful tool for interacting with Julia and installing packages

As a reminder, to open the REPL on your desktop, either

  1. Navigating to Julia through your menus or desktop icons (Windows, Mac), or
  2. Opening a terminal and typing julia (Linux)

If you are using a JupyterHub installation, you can start the REPL in JupyterLab by choosing

  1. Choose “New Launcher”
  2. Choose a Julia Console

We examine the REPL and its different modes in more detail in the tools and editors lecture

(Optional) Adding Jupyter to the Path

If you installed Jupyter using Julia, then you may find it convenient to add it to your system path in order to launch JupyterLab without running a Julia terminal.

The default location for the Jupyter binaries is relative to the .julia folder (e.g., "C:\Users\USERNAME\.julia\conda\3\Scripts on Windows)

You can find the directory in a Julia REPL using by executing

] add Conda
using Conda

On Linux/OSX, you could add that path to your .bashrc

On Windows, to add directly to the path, type ; to enter shell mode and then execute

setx PATH "$(Conda.SCRIPTDIR);%PATH%"